Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.more » « less
-
Abstract Urban development, topographic relief, and coastal boundaries can all exert influences on storm hydroclimatology, making rainfall and flood frequency analysis a major challenge. This study explores heterogeneity in extreme rainfall in the Baltimore Metropolitan region at small spatial scales using hydrometeorological analyses of major storm events in combination with hydroclimatological analyses based onstorm catalogsdeveloped using a 16‐year record of high‐resolution bias‐corrected radar rainfall fields. Our analyses demonstrate the potential for rainfall frequency methods using storm catalogs combined with stochastic storm transposition (SST); procedures are implemented for Dead Run, a small (14.3 km2) urban watershed located within the Baltimore Metropolitan area. The results point to the pronounced impact of complex terrain (including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in the region) on the regional rainfall climatology. Warm‐season thunderstorm systems are shown to be the dominant mechanism for generating extreme, short‐duration rainfall that leads to flash flooding. The SST approach is extended through the implementation of amultiplier fieldthat accounts for spatial heterogeneities in extreme rainfall magnitude. SST‐based analyses demonstrate the need to consider rainfall heterogeneity at multiple scales when estimating the rainfall intensity‐duration‐frequency relationships.more » « less
An official website of the United States government
